六、日期时间预处理
作者:Chris Albon
译者:飞龙
协议:CC BY-NC-SA 4.0
把日期和时间拆成多个特征
# 加载库import pandas as pd# 创建数据帧df = pd.DataFrame()# 创建五个日期df['date'] = pd.date_range('1/1/2001', periods=150, freq='W')# 为年月日,时分秒创建特征df['year'] = df['date'].dt.yeardf['month'] = df['date'].dt.monthdf['day'] = df['date'].dt.daydf['hour'] = df['date'].dt.hourdf['minute'] = df['date'].dt.minute# 展示三行df.head(3)
| date | year | month | day | hour | minute |
|---|
| 0 | 2001-01-07 | 2001 | 1 | 7 | 0 | 0 |
| 1 | 2001-01-14 | 2001 | 1 | 14 | 0 | 0 |
| 2 | 2001-01-21 | 2001 | 1 | 21 | 0 | 0 |
计算日期时间之间的差
# 加载库import pandas as pd# 创建数据帧df = pd.DataFrame()# 创建两个 datetime 特征df['Arrived'] = [pd.Timestamp('01-01-2017'), pd.Timestamp('01-04-2017')]df['Left'] = [pd.Timestamp('01-01-2017'), pd.Timestamp('01-06-2017')]# 计算特征之间的间隔df['Left'] - df['Arrived']'''0 0 days1 2 daysdtype: timedelta64[ns] '''# 计算特征之间的间隔pd.Series(delta.days for delta in (df['Left'] - df['Arrived']))'''0 01 2dtype: int64 '''
将字符串转换为日期
# 加载库import numpy as npimport pandas as pd# 创建字符串date_strings = np.array(['03-04-2005 11:35 PM', '23-05-2010 12:01 AM', '04-09-2009 09:09 PM'])
如果errors="coerce"那么任何问题都不会产生错误(默认行为),而是将导致错误的值设置为NaT(即缺失值)。
| 代码 | 描述 | 示例 |
|---|
%Y | 整年 | 2001 |
%m | 零填充的月份 | 04 |
%d | 零填充的日期 | 09 |
%I | 零填充的小时(12 小时) | 02 |
%p | AM 或 PM | AM |
%M | 零填充的分钟 | 05 |
%S | 零填充的秒钟 | 09 |
# 转换为 datetime[pd.to_datetime(date, format="%d-%m-%Y %I:%M %p", errors="coerce") for date in date_strings]'''[Timestamp('2005-04-03 23:35:00'), Timestamp('2010-05-23 00:01:00'), Timestamp('2009-09-04 21:09:00')] '''
转换 pandas 列的时区
# 加载库import pandas as pdfrom pytz import all_timezones# 展示十个时区all_timezones[0:10]'''['Africa/Abidjan', 'Africa/Accra', 'Africa/Addis_Ababa', 'Africa/Algiers', 'Africa/Asmara', 'Africa/Asmera', 'Africa/Bamako', 'Africa/Bangui', 'Africa/Banjul', 'Africa/Bissau'] '''# 创建十个日期dates = pd.Series(pd.date_range('2/2/2002', periods=10, freq='M'))# 设置时区dates_with_abidjan_time_zone = dates.dt.tz_localize('Africa/Abidjan')# 查看 pandas 序列dates_with_abidjan_time_zone'''0 2002-02-28 00:00:00+00:001 2002-03-31 00:00:00+00:002 2002-04-30 00:00:00+00:003 2002-05-31 00:00:00+00:004 2002-06-30 00:00:00+00:005 2002-07-31 00:00:00+00:006 2002-08-31 00:00:00+00:007 2002-09-30 00:00:00+00:008 2002-10-31 00:00:00+00:009 2002-11-30 00:00:00+00:00dtype: datetime64[ns, Africa/Abidjan] '''# 转换时区dates_with_london_time_zone = dates_with_abidjan_time_zone.dt.tz_convert('Europe/London')# 查看 pandas 序列dates_with_london_time_zone'''0 2002-02-28 00:00:00+00:001 2002-03-31 00:00:00+00:002 2002-04-30 01:00:00+01:003 2002-05-31 01:00:00+01:004 2002-06-30 01:00:00+01:005 2002-07-31 01:00:00+01:006 2002-08-31 01:00:00+01:007 2002-09-30 01:00:00+01:008 2002-10-31 00:00:00+00:009 2002-11-30 00:00:00+00:00dtype: datetime64[ns, Europe/London] '''
编码星期
# 加载库import pandas as pd# 创建数据集dates = pd.Series(pd.date_range('2/2/2002', periods=3, freq='M'))# 查看数据dates'''0 2002-02-281 2002-03-312 2002-04-30dtype: datetime64[ns] '''# 查看星期dates.dt.weekday_name'''0 Thursday1 Sunday2 Tuesdaydtype: object '''
处理时间序列中的缺失值
# 加载库import pandas as pdimport numpy as np# 创建日期time_index = pd.date_range('01/01/2010', periods=5, freq='M')# 创建数据帧,设置索引df = pd.DataFrame(index=time_index)# 创建带有一些缺失值的特征df['Sales'] = [1.0,2.0,np.nan,np.nan,5.0]# 对缺失值执行插值df.interpolate()
| Sales |
|---|
| 2010-01-31 | 1.0 |
| 2010-02-28 | 2.0 |
| 2010-03-31 | 3.0 |
| 2010-04-30 | 4.0 |
| 2010-05-31 | 5.0 |
# 前向填充df.ffill()
| Sales |
|---|
| 2010-01-31 | 1.0 |
| 2010-02-28 | 2.0 |
| 2010-03-31 | 2.0 |
| 2010-04-30 | 2.0 |
| 2010-05-31 | 5.0 |
# 后向填充df.bfill()
| Sales |
|---|
| 2010-01-31 | 1.0 |
| 2010-02-28 | 2.0 |
| 2010-03-31 | 5.0 |
| 2010-04-30 | 5.0 |
| 2010-05-31 | 5.0 |
# 对缺失值执行插值df.interpolate(limit=1, limit_direction='forward')
| Sales |
|---|
| 2010-01-31 | 1.0 |
| 2010-02-28 | 2.0 |
| 2010-03-31 | 3.0 |
| 2010-04-30 | NaN |
| 2010-05-31 | 5.0 |
处理时区
# 加载库import pandas as pdfrom pytz import all_timezones# 展示十个时区all_timezones[0:10]'''['Africa/Abidjan', 'Africa/Accra', 'Africa/Addis_Ababa', 'Africa/Algiers', 'Africa/Asmara', 'Africa/Asmera', 'Africa/Bamako', 'Africa/Bangui', 'Africa/Banjul', 'Africa/Bissau'] '''# 创建 datetimepd.Timestamp('2017-05-01 06:00:00', tz='Europe/London')# Timestamp('2017-05-01 06:00:00+0100', tz='Europe/London') # 创建 datetimedate = pd.Timestamp('2017-05-01 06:00:00')# 设置时区date_in_london = date.tz_localize('Europe/London')# 修改时区date_in_london.tz_convert('Africa/Abidjan')# Timestamp('2017-05-01 05:00:00+0000', tz='Africa/Abidjan')
平移时间特征
# 加载库import pandas as pd# 创建数据帧df = pd.DataFrame()# 创建数据df['dates'] = pd.date_range('1/1/2001', periods=5, freq='D')df['stock_price'] = [1.1,2.2,3.3,4.4,5.5]# 将值平移一行df['previous_days_stock_price'] = df['stock_price'].shift(1)# 展示数据帧df
| dates | stock_price | previous_days_stock_price |
|---|
| 0 | 2001-01-01 | 1.1 | NaN |
| 1 | 2001-01-02 | 2.2 | 1.1 |
| 2 | 2001-01-03 | 3.3 | 2.2 |
| 3 | 2001-01-04 | 4.4 | 3.3 |
| 4 | 2001-01-05 | 5.5 | 4.4 |
滑动时间窗口
# 加载库import pandas as pd# 创建 datetimetime_index = pd.date_range('01/01/2010', periods=5, freq='M')# 创建数据帧,设置索引df = pd.DataFrame(index=time_index)# 创建特征df['Stock_Price'] = [1,2,3,4,5]# 计算滑动均值df.rolling(window=2).mean()
| Stock_Price |
|---|
| 2010-01-31 | NaN |
| 2010-02-28 | 1.5 |
| 2010-03-31 | 2.5 |
| 2010-04-30 | 3.5 |
| 2010-05-31 | 4.5 |
# 识别滑动时间窗口中的最大值df.rolling(window=2).max()
| Stock_Price |
|---|
| 2010-01-31 | NaN |
| 2010-02-28 | 2.0 |
| 2010-03-31 | 3.0 |
| 2010-04-30 | 4.0 |
| 2010-05-31 | 5.0 |
选择日期时间范围
# 加载库import pandas as pd# 创建数据帧df = pd.DataFrame()# 创建 datetimedf['date'] = pd.date_range('1/1/2001', periods=100000, freq='H')
如果数据帧未按时间索引,请使用此方法。
# 选择两个日期时间之间的观测df[(df['date'] > '2002-1-1 01:00:00') & (df['date'] <= '2002-1-1 04:00:00')]
| date |
|---|
| 8762 | 2002-01-01 02:00:00 |
| 8763 | 2002-01-01 03:00:00 |
| 8764 | 2002-01-01 04:00:00 |
如果数据帧按时间索引,请使用此方法。
# 设置索引df = df.set_index(df['date'])# 选择两个日期时间之间的观测df.loc['2002-1-1 01:00:00':'2002-1-1 04:00:00']
| date |
|---|
| date | |
| 2002-01-01 01:00:00 | 2002-01-01 01:00:00 |
| 2002-01-01 02:00:00 | 2002-01-01 02:00:00 |
| 2002-01-01 03:00:00 | 2002-01-01 03:00:00 |
| 2002-01-01 04:00:00 | 2002-01-01 04:00:00 |